Sequential signaling through Notch1 and erbB receptors mediates radial glia differentiation.

نویسندگان

  • Brooke A Patten
  • Jean Michel Peyrin
  • Gerry Weinmaster
  • Gabriel Corfas
چکیده

Radial glia cells both generate neurons and physically guide nascent neurons to their target destination in the cortex, and as such they are essential for CNS development. It has been proposed that in the developing cerebellum, neuronal contact induces radial glia formation, however, the mechanisms involved in this process are not well understood. Here we demonstrate that neuronal induction of radial glia formation is the result of sequential signaling through Notch1 and erbB receptors. First, Notch1 activation by neuronal contact induces the glial expression of the brain lipid binding protein (BLBP) and erbB2 genes. Interestingly, two different signaling pathways mediate these effects of Notch1 on transcription, BLBP expression being dependent on Su(H), whereas erbB2 is regulated by a yet unidentified Notch1 pathway. The subsequent increase in erbB2 receptor expression makes the glia more responsive to neuronal NRG, which then induces the morphological transformation into radial glia. Thus, these results unveil some of the mechanisms underlying radial glia formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notch1 signaling regulates radial glia differentiation through multiple transcriptional mechanisms.

Signaling by the Notch1 receptor is critical for the formation of radial glia in the developing nervous system. We have shown previously that Notch1 regulates the molecular and morphological differentiation of radial glia through the transcriptional activation of at least two genes, brain lipid binding protein (BLBP) and the erbB2 receptor tyrosine kinase. However, the mechanisms by which this ...

متن کامل

Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells.

Radial glia function during CNS development both as neural progenitors and as a scaffolding supporting neuronal migration. To elucidate pathways involved in these functions, we mapped in vivo the promoter for Blbp, a radial glial gene. We show here that a binding site for the Notch effector CBF1 is essential for all Blbp transcription in radial glia, and that BLBP expression is significantly re...

متن کامل

Radial Glial Identity Is Promoted by Notch1 Signaling in the Murine Forebrain

In vertebrates, Notch signaling is generally thought to inhibit neural differentiation. However, whether Notch can also promote specific early cell fates in this context is unknown. We introduced activated Notch1 (NIC) into the mouse forebrain, before the onset of neurogenesis, using a retroviral vector and ultrasound imaging. During embryogenesis, NIC-infected cells became radial glia, the fir...

متن کامل

Endogenous neuregulin restores radial glia in a (ferret) model of cortical dysplasia.

Radial glia are integral components of the developing neocortex. During corticogenesis, they form an important scaffold for neurons migrating into the cortical plate. Recent attention has focused on neuregulin (NRG1), acting through erbB receptors, in maintaining their morphology. We developed a model of developmental radial glial disruption by delivering an antimitotic [methylazoxy methanol (M...

متن کامل

Neuregulin and erbB Receptors Play a Critical Role in Neuronal Migration

The migration of neuronal precursors along radial glial fibers is a critical step in the formation of the nervous system. In this report, we show that neuregulin-erbB receptor signaling plays a crucial role in the migration of cerebellar granule cells along radial glial fibers. Granule cells express neuregulin (NRG), and radial glia cells express erbB4 in the developing cerebellum and in vitro....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 14  شماره 

صفحات  -

تاریخ انتشار 2003